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Outline 

•  Experimental background – SC-metal-insulator in InO, TiN, Ta and MoGe. 
 
 
•   Two paradigms: 

 - Vortex condensation: Vortex metal theory.  
 - Percolation paradigm 

 

•  Thin film Giaever transformer – amorphous thin-film bilayer. 
 
 
•  Predictions for the no-tunneling regime of a thin-film bilayer 
 
 

•  Conclusions 



SC-insulator transition 
•  Thin films: B tunes a SC-Insulator transition.  

(Hebard, Paalanen, PRL 1990) 
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Observation of Superconductor-insulator transition 

•  Thin amorphous films: B tunes a SC-Insulator transition.  

InO: 

•  Saturation as T      0 

(Steiner, Kapitulnik) (Sambandamurthy, Engel,  
   Johansson, Shahar, PRL 2004) 

•  Insulating peak different from sample to sample, scaling different – log, activated.   



Vortex Paradigm 



X-Y model for superconducting film: 
 Cooper pairs as Bosons 
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•  Large U  -  Mott insulator  
 (no charge fluctuations) 

 
•  Large       -  Superfluid  

 (intense charge  fluctuations,  
 no phase fluctuations)  

sρ
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superfluid insulator 

•  Standard model for bosonic SF-Ins transition – “Bose-Hubbard model”: 

•  When the superconducting order is strong – ignore electronic excitations. 



Vortex description of the SF-insulator transition 
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•  Vortex hopping: (result of charging effects) 

•  Vortex-vortex interactions: 
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Cooper-pairs: 

Vs t/ρ
V-superfluid V- insulator 

Vortices: 
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Vortex: 

Condensed vortices  
 = insulating CP’s 

(Fisher, 1990) 



Universal (?) resistance at SF-insulator transition 

Assume that vortices and Cooper-pairs  
 are self dual at transition point. 

•  EMF due to vortex hopping: 
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In reality superconducting films are not self dual: 

•  vortices interact logarithmically, Cooper-pairs interact at most with power law. 
 
•  Samples are very disordered and the disorder is different for cooper-pairs  
    and vortices. 



Magnetically tuned Superconductor-insulator transition 

•  Net vortex density: 
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•  Disorder pins vortices for small field – superconducting phase. 
•  Large fields some free vortices appear and condense – insulating phase. 
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Vortex SF 
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Disorder localized 
Electrons: 

Normal (unpaired) 
 

•  Larger fields superconductivity is destroyed – normal (unpaired) phase. 



Magnetically tuned Superconductor-insulator transition 

•  Net vortex density: 
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Disorder localized 

Electrons: 
Normal (unpaired) 

 

Problems 
•  Saturation of the resistance – ‘metallic phase’ 

•  Non-universal insulating peak – completely different depending on disorder. 

Metallic 
phase? 



  
Two-fluid model for the SC-Metal-Insulator transition  

CPJ

Finite conductivity:  
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   Uncondensed vortices:  
     Cooper-pair channel  

Disorder induced Gapless QP’s  
(electron channel) 

(delocalized core states?) 
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(Galitski, Refael, Fisher, Senthil, 2005) 

Two channels in parallel: 

eJ


+

VjEz


=×ˆ
CPV JzF


×= ˆ



Transport properties of the vortex-metal 
1−+= Veeff σσσEffective conductivity:  

•  Assume:  
     -          grows from zero to        .       -         grows from zero to infinity. Vσeσ Nσ
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Transport properties of the vortex-metal 
1−+= Veeff σσσEffective conductivity:  

Chargless spinons contribute to conductivity!  

Strong insulators: 
TiN, InO 

•  Assume:  
     -         grows from zero to        .       -         grows from zero to infinity. Vσeσ Nσ
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More physical properties of the vortex metal 
Cooper pair tunneling 

CPe GGG += 2

 (Naaman, Tyzer, Dynes, 2001). 

•  A superconducting STM can tunnel Cooper 
   pairs to the film: 



More physical properties of the vortex metal 
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Cooper pair tunneling 

CPe GGG += 2
•  A superconducting STM can tunnel Cooper 
   pairs to the film: 

Vortex metal phase: 
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Percolation Paradigm 
(Trivedi,  
 Dubi, Meir, Avishai,  
Spivak, Kivelson, 
et al.) 
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Pardigm II: superconducting vs. Normal regions percolation 

•  Strong disorder breaks the film into superconducting and normal regions.  
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Pardigm II: superconducting vs. Normal regions percolation 
•  Strong disorder breaks the film into superconducting and normal regions.  

•  Near percolation – thin channels of the disorder-localized normal phase.  
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Pardigm II: superconducting vs. Normal regions percolation 
•  Strong disorder breaks the film into superconducting and normal regions.  

•  Near percolation – thin channels of the disorder-localized normal phase.  
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•  Far from percolation – disordered localized normal electrons. 



Magneto-resistance curves in the percolation picture  

•  Simulate film as a resistor network: 

Normal links: 
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(Dubi, Meir, Avishai, 2006) 



Drag in a bilayer system 



Giaever transformer – Vortex drag 
Two type-II bulk superconductors: 
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2DEG bilayers – Coulomb drag 
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•  Coulomb force creates friction between the layers.  
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•  Opposite sign to Giaever’s vortex drag.  

•   Inversely proportional to density squared: 



2DEG bilayers – Coulomb drag 
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Two thin electron gases: 
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Example: 1=Tν “Excitonic condensate” 

(Kellogg, Eisenstein, Pfeiffer, West,  2002) 



Thin film Giaever transformer 

DV
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Amorphous (SC) thin films 

Insulating layer, 
Josephson tunneling: 

  0=J or  0>J

nmdSC 20~
nmdIns 5~

 Percolation paradigm 

•  Drag is due to coulomb interaction. 

•  Electron density: 
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 Vortex condensation paradigm 

•  Drag is due to inductive current  
  interactions, and Josephson coupling.  

•  Vortex density: 
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Vortex drag in thin films bilayers: interlayer interaction 

r 

•  Vortex current suppressed. 
       
e.g., Pearl penetration length: 
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•  Vortex attraction=interlayer induction. 
   Also suppressed due to thinness. 
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Vortex drag in thin films within vortex metal theory 
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•  Perturbatively:  

],[~ 21 jjGR drag
VD =

•  Expect: 
2

2

1

1

V

V

V

Vdrag
V nn
G σσ

⋅∝
2

2

1

1

V

V

V

Vdrag
V nn
G

∂

∂
⋅

∂

∂
∝

σσ

(Following von Oppen, Simon, Stern, PRL 2001) 

•  Answer: 
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U – screened inter-layer potential.   χ - Density response function (diffusive FL) 

Drag generically 
proportional  to MR slope. 
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(Kamenev, Oreg) 



Vortex drag in thin films: Results 

•  Our best chance (with no J tunneling) is the highly insulating InO: 

•  maximum drag: 
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Note:   similar analysis for SC-metal ‘bilayer’ using a ground plane.  

Experiment: Mason, Kapitulnik (2001) Theory:  Michaeli, Finkel’stein, (2006) 



Percolation picture: Coulomb drag 

•  Solve a 2-layer resistor network with drag.  
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•  Can neglect drag with the SC islands: 

- Normal 

- SC 

•  Normal-Normal drag – use results for disorder localized electron glass: 

(Shimshoni, PRB 1994) 
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Percolation picture: Results 

•  Solution of the random resistor network: 

? 

Compare to vortex drag: 



Conclusions 

•  Vortex picture and the puddle picture:  similar single layer predictions.  

•  Giaever transformer bilayer geometry may qualitatively distinguish:  
Large drag for vortices, small drag for electrons, with opposite signs. 

•  Drag in the limit of zero interlayer tunneling:  

ΩmR vortex
D 1.0~ vs.  Ω−1110~npercolatio

DR

•  Intelayer Josephson should increase both values, and enhance the effect. 
    (future theoretical work)   

•  Amorphous thin-film bilayers will yield interesting complementary  
  information about the SIT.  



Conclusions 

•  Vortex picture and the puddle picture:  similar single layer predictions.  

•  Giaever transformer bilayer geometry may qualitatively distinguish:  
Large drag for vortices, small drag for electrons. 

•  What induces the gigantic resistance and the SC-insulating transition? 

•  What is the nature of the insulating state? Exotic vortex physics? 

Phenomenology: 

Experimental suggestion: 



Observation of a metallic phase 

•  MoGe: 

(Mason, Kapitulnik, PRB 1999) 



Observation of a metallic phase 

•  Ta: 

(Qin, Vicente, Yoon, 2006) 

•  Saturation at ~100mK: New metalic phase? (or saturation of electrons temperature)  



Universal (?) resistance at SF-insulator transition 

Assume that vortices and Cooper-pairs  
 are self dual at transition point. 

•  EMF due to vortex hopping: 
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In reality superconducting films are not self dual: 

•  vortices interact logarithmically, Cooper-pairs interact at most with power law. 
 
•  Samples are very disordered and the disorder is different for cooper-pairs  
    and vortices. 



More physical properties of the vortex metal 
Cooper pair tunneling 

CPe GGG += 2

 (Naaman, Tyzer, Dynes, 2001). 

•  A superconducting STM can tunnel Cooper 
   pairs to the film: 



More physical properties of the vortex metal 
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Cooper pair tunneling 

CPe GGG += 2
•  A superconducting STM can tunnel Cooper 
   pairs to the film: 

Vortex metal phase: 
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2DEG bilayers – Coulomb drag 
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Example: 1=Tν “Excitonic condensate” 

(Kellogg, Eisenstein, Pfeiffer, West,  2002) 


